Abstract

Novel multilayered films were engineered by integrating W2N and Ag-SiNx layers in a multilayer structure to obtain improved hardness and tribological properties. The films were fabricated by alternating magnetron sputtering, depositing 40 nm layers of W2N with varying thickness of Ag-SiNx layers varying in thickness from 4 to 20 nm. The effect of the increase thickness of the Ag-SiNx layers in the films microstructure and tribological properties were accessed. Tribological experiments were conducted at room temperature (RT), 500 °C, and RT-500 °C cycling conditions. The results revealed the production of a multilayered structure comprising single fcc-W2N layers interspersed with dual-phase layers consisting of fcc-Ag and amorphous SiNx phases. Tribological results indicated an improvement in the tribological performance with increase thickness of the Ag-SiNx layer up to 12 nm. The tribo-synergistic/combined action of both W2N and Ag-SiNx layers, along with the presence of layered lubricant tribo-phases of WO3 and Ag2WO4, showcased the pivot role in reducing friction and enhancing wear resistance. The optimized multilayered film, featuring a 12 nm Ag-SiNx layer, demonstrated exceptional tribological properties under temperature-cycling from RT to 500 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.