Abstract

A piezoelectric vibration sensing system (PVSS) was devised in this study and employed for the purpose of vibration sensing in machining. The system comprises three primary components, wherein the sensor is utilized for the collection and conversion of energy, subsequently transmitting it to the data acquisition card (DAC) via a low-noise cable. The crux of the entire system lies in the upper computer-based control application, which facilitates the transmission of instructions to the DAC for data acquisition and transmission. The integration of Wi-Fi data transfer capability between the DAC and the computer serves to eliminate the principal issue associated with employing the sensor as a voltage source. The sensitivity of the designed device was calibrated utilizing commercial accelerometers, while an aluminum workpiece was fabricated to conduct vibration and machining tests in order to verify the performance of the PVSS. The shaker excitation experiment yielded a peak voltage of 0.05 mV, thereby substantiating that the PVSS can more accurately discern the natural frequency of the workpiece below 5000 Hz compared to commercial accelerometers. The experiments verify that the devised PVSS can precisely measure vibrations during the milling process, and can be implemented for the purpose of detecting machining stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call