Abstract

The remarkable success of two FDA-approved mRNA-encapsulating vaccines (Comirnaty® and Spikevax®) indicated the importance of lipid nanoparticles (LNPs) delivery systems in clinical use. Currently, mRNA-encapsulating LNPs (mRNA-LNPs) vaccines are stored as frozen liquid at low or ultralow temperatures. We designed lyophilized LNPs utilizing FDA-approved lipids to expedite the clinical application of our developed lyophilized mRNA-LNPs in the future. The key parameters of sucrose concentration and the selection and molar ratio of the four lipids in these vaccines were optimized for long-term stability with high transfection efficiency after lyophilization. We demonstrated that 8.7% sucrose is the optimal cryoprotectant concentration to maintain the transfection efficiency of lyophilized mRNA-LNPs. Optimal lipid formulations with high transfection efficiency both before and after lyophilization were screened using an orthogonal experimental design. The ratios of distearoylphosphatidylcholine (DSPC)/cholesterol and the selection of the ionizable and PEGylated lipids are the main factors influencing the long-term stability of mRNA-LNPs. Comparative mouse transfection experiments showed that the optimal lyophilized mRNA-LNPs maintained high mRNA expression after lyophilization, predominantly in the spleen or liver, with no expression in the kidneys or eyes. Our studies demonstrated the importance of the sucrose concentration and of the selection and molar ratio of the four lipids composing LNPs for maintaining mRNA-LNP stability under lyophilization and for long-term storage under mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.