Abstract

SUMMARYA CCC limb and a new 3CCC parallel mechanism have been designed in this paper based on geometry analysis. Their mobility and geometrical constraints are discussed by using screw theory and geometrical equations separately. Following that both the inverse and forward kinematics of the 3CCC parallel mechanism are proposed, in which Dixon's resultant is used to get the forward solutions for the orientation and a eighth-order polynomial equation in one unknown is obtained, leading to the results for the position analysis, numerical examples confirm these theoretical results. A short comparison with the traditional Stewart platforms is presented in terms of kinematics, workspace and trajectory planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.