Abstract

This paper presents a new three-degrees-of-freedom spherical parallel manipulator, which is designed to be used as a prosthetic wrist. The inverse position problem is solved and a closed form equation is obtained. Afterward, using the screw theory approach, the mobility analysis is performed to demonstrate that the proposed mechanism performs spherical motion. The velocity analysis is carried out by means of screw theory, and an input–output velocity equation is obtained. Furthermore, a preliminary virtual design of the mechanism is presented and the workspace and analytical static analysis is performed. Finally, a set of dynamic simulations are carried out to demonstrate the three movements (i.e., pronation–supination, flexion–extension, and ulnar–radial deviation) of the wrist, and the simulation results show that the proposed mechanism is capable of performing the full range of motion required for daily living and the required actuation torques are obtained for the future development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.