Abstract
Using the skeletal structure and muscle distribution of the hind limbs of a jumping kangaroo as inspiration, a bionic jumping leg was designed with pneumatic artificial muscles (PAMs) as actuators. Referring to the position of biarticular muscles in kangaroos, we constructed a bionic joint using biarticular and monoarticular muscle arrangements. At the same time, the problem of the joint rotation angle limitations caused by PAM shrinkage was solved, and the range of motion of the bionic joint was improved. Based on the output force model of the PAM, we established a dynamic model of the bionic leg using the Lagrange method. In view of the coupling problem caused by the arrangement of the biarticular muscle, an extended state observer was used for decoupling. The system was decoupled into two single-input and single-output systems, and angle tracking control was carried out using active disturbance rejection control (ADRC). The simulation and experimental results showed that the ADRC algorithm had a better decoupling effect and shorter adjustment time than PID control. The jumping experiments showed that the bionic leg could jump with a horizontal displacement of 320 mm and a vertical displacement of 150 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.