Abstract
An ultra-low latency, high throughput Internet protocol (IP) over wavelength division multiplexing (WDM) packet switching technology for next-generation Internet (NGI) applications has been designed and demonstrated. This method overcomes limitations of conventional optical packet switching, which require buffering of packets and synchronization of bits, and optical burst switching methods that require estimation of delays at each node and for each path. An optical label switching technique was developed to realize flexible bandwidth-on-demand packet transport on a reconfigurable WDM network. The aim was to design a network with simplified protocol stacks, scalability, and data transparency. This network will enable the NGI users to send their data applications at gigabit/second access speed with low and predictable latency (<1 /spl mu/sec per switch node), with a system capacity of beyond multi-Tb/s. Packet forwarding utilizes WDM optical headers that are carried in-band on the same wavelength and modulated out-of-band in the frequency domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.