Abstract
The design, analysis and implementation of a robot arm system, which is expressed towards its performance with an analytical model by using LabVIEW and embedded system tools was presented in this article. Mathematical modeling of kinematics plays an essential role in design and implementation of a robot arm control. The projected work was focused to control the end effector of the robot arm to achieve any accessible point in an amorphous region using LabVIEW, ARM (Advanced RISC (Reduced Instruction Set Computing) Machine) microcontroller and Dexter ER2 robotic arm. LabVIEW uses analytical method to design the inverse kinematic model of the robot arm. The inverse kinematic model and robot arm control was implemented using LabVIEW and ARM microcontroller. LabVIEW uses the parallel communication to send the joint angles of the robot arm to the ARM. ARM microcontroller uses five PWM (Pulse Width Modulation) signals in order to control the robot arm, which was geared up with servo motors. Robot arm was controlled manually through the LabVIEW GUI (Graphical User Interface) controls. The present paper discussed about the mechanical configuration, analytical modeling, software and hardware of the above said work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOSR Journal of Electrical and Electronics Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.