Abstract

Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in engineering validation phase. The assembled Toroidal Field (TF) magnet system of SST-1 will be operated at 10kA of nominal current at helium cooled condition of 4.5K. A reliable and fail proof quench detection (QD) system is essential for the safety and the investment protection requirements of the magnets. This QD system needs to continuously monitor all the superconducting coils, which include 16 TF magnets, return-loop, bus bars and current leads. In case of any event initiating the normal resistive zone and reaching thermal run-away, the QD system needs to trigger the magnet protection circuits. Precision instrumentation and control system with 204 signal channels had been developed for detection of quench anywhere in the entire TF magnet system. In the present configuration of quench detection scheme, the voltage drop across each double pancake (DP) of each TF coil are compared with its two adjacent DPs for the detection of normal zone and cancelation of inductive couples. Two identical redundant systems with one out of two configurations are successfully commissioned and tested at IPR. This paper describes the design and implementation of the QD system, Installation experience, validation test and initial results from the recent SST-1 magnet system charging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.