Abstract

This paper introduces the mechanical design and control system of a mobile robot for logistics transportation in manufacturing workshops. The robot is divided into a moving part and a grasping part. The moving part adopts the mecanum wheel four-wheel-drive chassis, which has omnidirectional moving ability. The mechanical system is based on four mechanical wheels, and a modular suspension mechanism is designed. The grasping part is composed of a depth camera, a cooperative manipulator, and an electric claw. Finally, the two are coordinated and controlled by computer. The controller hardware of the mobile platform is designed, and the functional modules of the mobile platform are designed based on the RT thread embedded system. For the navigation part of the mobile robot, a fuzzy PID deviation correction algorithm is designed and simulated. Using the Hough circular transform algorithm, the visual grasping of the manipulator is realized. Finally, the control mode of the computer-controlled manipulator and the manipulator-controlling mobile platform is adopted to realize the feeding function of the mobile robot, and the experimental verification is carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call