Abstract
Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital signal processors (DSPs) to reduce total hardware costs. Converting the simulation model to fixed point arithmetic and then porting it to a target DSP device is a difficult and time-consuming process. In this paper, we analyze the conversion process. We transformed selected linear algebra algorithms from floating point to fixed point arithmetic, and compared real-time requirements and performance between the fixed point DSP and floating point DSP algorithm implementations. We also introduce an advanced code optimization and an implementation by DSP-specific, fixed point C code generation. By using the techniques described in the paper, speed can be increased by a factor of up to 10 compared to floating point emulation on fixed point hardware.
Highlights
Numerical analysis motivated the development of the earliest computers
We investigate whether the fixed point digital signal processors (DSPs) are capable of handling linear numerical algebra algorithms efficiently and accurately enough to be effective in real time, and we look at how they compare to floating point DSPs
Real-time performance of selected numerical linear algebra algorithms is compared between their implementations on fixed point DSP and floating point DSP platforms
Summary
Numerical analysis motivated the development of the earliest computers. During the last few decades linear algebra has played an important role in advances being made in the area of digital signal processing, systems, and control [1]. Computational and implementational aspects of numerical linear algebraic algorithms have strongly influenced the ways in which communications, computer vision, and signal processing problems are being solved. These algorithms depend on high data throughput and high speed computations for real-time performance. The performance in this chart is characterized by number of multiply and accumulate (MAC) operations that can execute in parallel. The latest fixed point DSP processors run at clock rates that are approximately three times higher and perform four times more 16 × 16 MAC operations in parallel than floating point DSPs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.