Abstract

This paper provides a comparison of a designed method of a fault ride through (FRT) circuit, i.e., switch-type fault current limiter (STFCL) and bridge-type fault current limiter (BFCL), to optimize the electrical parameters of grid-connected solar systems (PVSs) under asymmetric single line-to-ground fault and symmetric three-phase fault. The main differences between switch- and bridge-type fault current limiters is the electric component devices such as the bridge rectifier, snubber capacitor, energy absorption bypass and current-limiting inductors. In addition, the designed FRT performance with the inverter control are analyzed in-depth, e.g., a well-adjusted proportional integral (PI) and proposed steepest descent (SD) controller are compared in the fault condition. To compare the proposed method with the conventional method, the AC power and voltage on a common coupling point (PCC) and DC link voltage of the PV system are analyzed with a MATLAB/Simulink model of a 100 kW three-phase grid-connected photovoltaic system. The simulation results of the proposed FRT circuit and SD controller verify the stability improvement and vibration-free and fast and robust responses of electrical parameters on both PV grid sides during asymmetric disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.