Abstract
Abstract In a world struggling for sustainable access to energy for all, renewable energy systems can be a solution to implement on isolated micro-communities. However, such an implementation is still a challenge. This paper aims to review several types of projects developed in different micro-communities, namely small islands and remote villages, both in cases of real implementation and only evaluation studies. To do that, we analyzed documented projects in micro-communities with less than 100,000 people. We looked into different indicators related to island characterization, energy demand and proposed technical solution, in order to identify the determinant factors for the success of the implementation and how do they differ for islands and remote villages. In islands, the main factors that influence the achievement of higher percentages of renewable source (RES) are the design of the existing energy system, the presence of a reliable energy storage system and the profile of the electricity demand, especially the occurrence of peak demand and seasonal oscillations. In general, the more popular configuration is a diesel/wind/photovoltaic. In remote villages, higher percentages of RES are meet more easily in cases of very low demand, unstructured previous electric supply and the capability of using batteries as storage. The more popular configuration is the photovoltaic/diesel/batteries. Having detailed demand information, estimates from the local renewable resources and the adequacy of the storage system are critical aspects for the system's design and its successful and reliable application. This review also shows that the data reported in many different case studies is often incomplete, which makes it hard to benchmark and evaluate the different projects. Thus, this paper proposes a methodology to report the data regarding the design and implementation of hybrid renewable energy systems, to enable the comparison of future projects and contribute to the discovery of new insights about the implementability of these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.