Abstract
In order to improve the autonomy and intelligence of group animation behavior, this paper proposes a particle swarm optimization algorithm for automatic control of group animation behavior. After the user inputs the group animation behavior construction target, the individual path is planned according to the fixed behavior rules, and the particle swarm optimization algorithm and the improved artificial fish swarm optimization algorithm are used to select the optimal action for the individual in the group animation according to the top-down control process. The experimental results show that after the PSO converges to the global optimal solution, the evolution times of the PSO converge to the global optimal solution again when the surrounding environment changes 10 times. The population diversity of particle swarm optimization algorithm is obviously better than those of the other two algorithms in the process of automatically controlling the movement of individuals to the circle and to the stand in the crowd animation. Compared with the original algorithm AFSA, the improved artificial fish swarm algorithm proposed in this paper is easier to obtain the global optimal value, and the optimization speed is also improved. In conclusion, the example analysis verifies that the algorithm can effectively realize the automatic control of group animation behavior and has high convergence speed and high autonomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.