Abstract

Plant protection UAVs are becoming the preferred plant protection method for agricultural pest control. At present, the evaluation of droplet distribution in aerial spraying is collected and evaluated after the completion of prevention and control operations, and there is a lack of real-time evaluation methods. Based on the flight parameter during the UAV plant protection process, real-time estimation of droplet distribution is the key to solving this problem and further improving the effectiveness of aerial spraying. This study proposes a merging algorithm for arbitrary polygonal regions, meshing the boundaries of the region, divide the mesh segments based on the overlapping meshes between the two regions, and connect the valid mesh connection segments of the two regions according to certain rules to obtain the intersection, union, and residual operation results between the regions. Afterwards, software based on this algorithm was developed and applied to generate spraying coverage regions, leakage spray regions, and repeated spray regions. The experimental results on theoretical and irregular routes show that the algorithm can accurately generate droplet distribution regions. The error of the calculation results with a mesh scale of 0.05 m is within 7‰, and the operating speed is above 30 Hz, meeting the real-time requirements. The smaller the mesh scale is, the higher the accuracy of the calculation results is, but the slower the calculation speed. Therefore, in practical applications, it is necessary to choose an appropriate mesh scale based on hardware computing power and accuracy level requirements. This study solves the problem of cumulative calculation of droplet distribution during the operation of plant protection UAVs, providing a basis for objectively evaluating the operation quality of plant protection UAVs and optimizing the setting of operation parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.