Abstract

Most of SCARA (Selective Compliance Articulated Robot Arm) direct drive robots today are equipped with a circular feedback system. The Resolved Motion Rate Control (RMRC) method increases the accuracy and compensates the lack of movement transmission system in accurate pick and place actions. In this study, a pick-and-place SCARA robot is developed by using a developed robot manipulator arm and controlling with its designed control systems. To make the end-effector of the SCARA robot arm following desired positions with specified joint velocities, the inverse kinematics technique, known as the RMRC generates motion trajectories automatically. In this research, the kinematics method has been applied with the Jacobian pseudo-inverse or Jacobian singularity-robust inverse to generate and record the pick-and-place motion of the SCARA robot. These records are then compared with the records after using RMRC methods. Several system features like the variation of samples during 50 seconds for the first and second robot joint, and mean deviation for the detailed analysis by the controller after using RMRC motion control algorithm demonstrates the preference of RMRC method in SCARA direct drive robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.