Abstract

This paper presents the design and implementation of robust real-time visual servoing control with an FPGA-based image co-processor for a rotary inverted pendulum. The position of the pendulum is measured with a machine vision system whose image processing algorithms are pipelined and implemented on a field programmable gate array (FPGA) device to meet real-time constraints. To enforce robustness to model uncertainty, and to attenuate disturbance and sensor noise, the design of the stabilizing controller is formulated as a problem of the mixed H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> control, which is then solved using the linear matrix inequality (LMI) approach. The designed control law is implemented on a digital signal processor (DSP). The effectiveness of the controller and the FPGA-based image co-processor is verified through experimental studies. The experimental results show that the designed system is able to robustly control an inverted pendulum in real-time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call