Abstract
In this paper, we propose a customer personalized system that presents the web pages to users which are customized to their individuality. It analyzes the action of users who visit the shopping mall, and preferentially supplies the necessary information to them. When they actually buy some items, it forecasts the user's access pattern to web site and their following purchasable items and improves their web page on the bases of their individuality. It reasons the relation among the web documents and among the items by using the log data of web server and the purchase information of DB. For reasoning, it employs Apriori algorithm, which is a method that searches the association rule. It reasons the web pages by considering the user's access pattern and time by using the web log and reasons the user's purchase pattern by using the purchase information of DB. On the basis of the relation among them, it appends the related web pages to link of user's web pages and displays the inferred goods on user's web pages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Fuzzy Logic and Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.