Abstract

These days, one of the most used layouts in the wind power industry is a variable-speed doubly-fed induction wind generator (DFIWG). For providing active power (P) and reactive power (Q) control during grid failures, this research examines the DFIWG. The system's transient behavior is examined under normal and abnormal circumstances. Through control of rotor side (RSC) and grid side (GSC) converters, Q assistance for the grid, and power converter stress reduction, the suggested control approach achieves system stability while enabling DFIWG to operate smoothly during grid failures. The DFIWG is exposed to three- and two-phase faults to analyze the machine's performance. The crowbar and STATCOM tools are implemented to enhance the system performance under faults and compared with the base case. The implemented tools successfully suppress rotor and stator overcurrent, over voltage at the DC link (DCL), and power oscillations, as well as supporting the grid voltage understudied cases. The obtained results prove that both STATCOM and crowbar not only enhance the system's effectiveness and performance but also enable the system to achieve the fault ride-through capacity (FRTC). MATLAB/SIMULINK 2017b is used for time-domain computer simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.