Abstract

In conventional flight control design, the autopilot and the autothrottle systems are usually considered separately, resulting in a complex system and inefficient integration of functions. Therefore, the concept of aircraft energy control is brought up to solve the problem of coordinated control using elevator and throttle. The goal of this study is to develop an optimal energy control system (OECS), based on the concept of optimal energy for fixed-wing unmanned aerial vehicles (UAVs). The energy of an aircraft is characterized by two parameters, which are specific energy distribution rate, driven by elevator, and total specific energy rate, driven by throttle. In this study, a system identification method was employed to obtain the energy model of a small UAV. The proposed approach consists of energy distribution loop and total energy loop. Energy distribution loop is designed based on linear-quadratic-Gaussian (LQG) regulator and is responsible for regulating specific energy distribution rate to zero. On the other hand, the total energy loop, based on simple gain scheduling method, is responsible for driving the error of total specific energy rate to zero. The implementation of OECS was successfully validated in the hard-in-the-loop (HIL) simulation of the applied UAV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.