Abstract

This study presents the design and implementation of a wire-driven, multi-joint robotic arm equipped with a cutting and gripping mechanism for harvesting delicate strawberries, with the goal of reducing labor and costs. The arm is mounted on a lifting mechanism and linked to a laterally movable module, which is affixed to the tube cultivation shelf. The trained deep learning model can instantly detect strawberries, identify optimal picking points, and estimate the contour area of fruit while the mobile platform is in motion. A two-stage fuzzy logic control (2s-FLC) method is employed to adjust the length of the arm and bending angle, enabling the end of the arm to approach the fruit picking position. The experimental results indicate a 90% accuracy in fruit detection, an 82% success rate in harvesting, and an average picking time of 6.5 s per strawberry, reduced to 5 s without arm recovery time. The performance of the proposed system in harvesting strawberries of different sizes under varying lighting conditions is also statistically analyzed and evaluated in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.