Abstract

In this work, we focus on the design and implementation of a robust flight control system for an unmanned helicopter. A comprehensive nonlinear model for an unmanned helicopter system, which is built by our research team at the National University of Singapore, is first presented. A three-layer control architecture is then adopted to construct an automatic flight control system for the aircraft, which includes (1) an inner-loop controller designed using the H ∞ control technique to internally stabilize the aircraft and at the same time yield good robustness properties with respect to external disturbances, (2) a nonlinear outer-loop controller to effectively control the helicopter position and yaw angle in the overall flight envelope, and lastly, (3) a flight-scheduling layer for coordinating flight missions. Design specifications for military rotorcraft set for the US army aviation are utilized throughout the whole process to guarantee a top level performance. The result of actual flight tests shows our design is very successful. The unmanned helicopter system is capable of achieving the desired performance in accordance with the military standard under examination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.