Abstract

For Global Navigation Satellite System (GNSS) data processing, voluminous real-time Continuously Operating Reference Stations (CORS) data processing is a challenging problem. There are many methods have been proposed for regional network processing, such as parallel computing. However, they are mainly used for post-processing or near real-time processing. Due to the magnitude-increased and epoch-related of large geographic area CORS data processing, it brings huge challenges for real-time reception and efficient processing. Therefore, a real-time distributed Precise Point Positioning (PPP) platform is designed based on the idea of distributed computing and message queue to solve voluminous real-time CORS data processing, and it decomposed the real-time data processing into three processes: Input/output (I/O) multiplexing for real-time stream data acquisition, parallel PPP computing, and Weight Round Robin task scheduling. The real-time data of 5 International GNSS Service (IGS) stations is processed, the results show that it generally takes 30 min to achieve accuracy within centimeter. When the platform is applied for 1414 CORS real-time data processing in China, it can perform PPP calculations with stability and high precision. Application of the real-time Precipitable Water Vapor (PWV) monitoring is also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call