Abstract

A software interface for performing on-the-fly quantum and force field calculations has been developed and integrated into RMG, an open-source reaction mechanism generation software package, to provide needed estimates of thermodynamic parameters. These estimates based on three-dimensional molecular geometries bypasses the traditional group-additivity-based approach, which can suffer from lack of availability of necessary parameters; this issue is particularly evident for polycyclic species with fused rings, which would require ad hoc ring corrections in the group-additivity framework. In addition to making extensive use of open-source tools, the interface takes advantage of recent developments from several fields, including three-dimensional geometry embedding, force fields, and chemical structure representation, along with enhanced robustness of quantum chemistry codes. The effectiveness of the new approach is demonstrated for a computer-constructed model of combustion of the synthetic jet fuel JP-10. The interface also establishes a framework for future improvements in the chemical fidelity of computer-generated kinetic models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.