Abstract
Increasing attention has been attracted to the research of ultrasound computed tomography (USCT). This article reports the design considerations and implementation details of a novel USCT research system named UltraLucid, which aims to provide a user-friendly platform for researchers to develop new algorithms and conduct clinical trials. The modular design strategy is adopted to make the system highly scalable. A prototype has been assembled in our laboratory, which is equipped with a 2048-element ring transducer, 1024 transmit (TX) channels, 1024 receive (RX) channels, two servers, and a control unit. The prototype can acquire raw data from 1024 channels simultaneously using a modular data acquisition and a transfer system, consisting of 16 excitation and data acquisition (EDAQ) boards. Each EDAQ board has 64 independent TX and RX channels and 4-Gb Ethernet interfaces for raw data transmission. The raw data can be transferred to two servers at a theoretical rate of 64 Gb/s. Both servers are equipped with a 10.9-TB solid-state drive (SSD) array that can store raw data for offline processing. Alternatively, after processing by onboard field-programmable gate arrays (FPGAs), the raw data can be processed online using multicore central processing units (CPUs) and graphics processing units (GPUs) in each server. Through control software running on the host computer, the researchers can configure parameters for transmission, reception, and data acquisition. Novel TX-RX scheme and coded imaging can be implemented. The modular hardware structure and the software-based processing strategy make the system highly scalable and flexible. The system performance is evaluated with phantoms and in vivo experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.