Abstract

In hybrid CDMA systems, multiuser detection (MUD) algorithms are adopted at the base station to reduce both multiple access and inter-symbol interference by exploitingspace-time (ST) signal processing techniques. Linear ST-MUD algorithms solve a linear problem where the system matrix has a block-Toeplitz shape. While exact inversion techniques impose an intolerable computational load, reduced complexity algorithms may be efficiently employed even if they show suboptimal behavior introducing performance degradation and nearfar effects. The block-Fourier MUD algorithm is generally considered the most effective one. However, the block-Bareiss MUD algorithm, that has been recently reintroduced, shows also good performance and low computational complexity comparingfavorably with the block-Fourier one. In this paper, both MUD algorithms will be compared, along with other well known ones, in terms of complexity, performance figures, hardware feasibility and implementation issues. Finally a short hardware description of the block-Bareiss and block-Fourier algorithms will be presented along with the FPGA (Field Programmable Gate Array) implementation of the block-Fourier using standard VHDL (VHSIC Hardware Description Language) design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.