Abstract

Purpose A high-fidelity simulation platform helps to verify the feasibility of the controller and reduce the cost of subsequent experiments. Therefore, this paper aims to design a high-fidelity hardware-in-the-loop (HIL) simulation platform for the tail-sitter vehicles. Design/methodology/approach The component breakdown approach is used to develop a more reliable model. Thruster dynamics and ground contact force are also modeled. Accurate aerodynamic coefficients are obtained through wind tunnel tests. This simulation system adopts a mode transition method to achieve continuous simulation for all flight modes. Findings Simulation results are in good agreement with the flight log and successfully predict the state of the vehicle. Originality/value First, the effects of the propeller slipstream are considered. Second, most researchers ignore the parasitic drag caused by the landing gear and other appendages, which is discussed in this study. Third, a ground contact model is implemented to allow a realistic simulation of the takeoff and landing phases. Fourth, complete wind tunnel tests are conducted to obtain more accurate aerodynamic coefficients. Finally, a mode transition method is deployed in the HIL simulation system to achieve continuous simulation for all flight modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call