Abstract

This paper proposes a high-efficiency dimmable LED driver for light emitting diodes (LED). The developed LED driver consists of a full-bridge resonant converter and six buck converters. The function of the full-bridge resonant converter is to obtain a smooth dc-link voltage for the buck converters by phase-shift modulation (PSM) while that of the six buck converters is to drive six LED modules, respectively. The gate voltage of the active switch of each buck converter is a combination of high-frequency and low-frequency pulses. The duty ratio of the high-frequency pulse controls the LED voltage and thereby, controls the amplitude of LED current. LEDs are dimmed by low-frequency pulse-width modulation (PWM) to vary the average current flowing through LED. Circuit equations are derived and circuit parameters are designed. High circuit efficiency is ensured by operating the active switches at zero-voltage switching-on to reduce the switching loss. Finally, a prototype circuit was built to verify the accuracy and feasibility of the proposed LED driver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.