Abstract
Ensuring a long battery life and satisfactory performance requires accurate charging cycles. There are three phases to the charge cycle - Constant Current Charge, Constant Voltage Charge, and Float Charge. It is usual that lead acid battery users complain about fast degrading performance because most the low cost commercially available lead Acid Battery chargers provides only single-stage charging phase which is that of constant-voltage charging phase. To ensure long service life and good performance, it is of paramount importance that all charging modes are respected. This said it is clear that the battery charger should have a certain degree of controllability over voltage and current quantities through-out the charging process. In this paper, we designed and built a lead acid battery charger to use in conjunction with a synchronous buck converter topology. After implementing and testing the system, we obtained good results in both the quantitative and qualitative analysis of the implemented system tested, a 12 V- 7000mAh battery. With the help of a MCU-based digital control system containing two different control transfer functions - constant current Feedback Control and Constant Voltage Feedback Control monitoring the charging process proved possible without any overshoot. The prototype showed us an efficiency rating of 86.60%, the maximum error level was recorded at 0.05V, and there were no problems related to overshoot or transient response when testing our prototype which worked flawlessly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.