Abstract
Since desorption electrospray ionization mass spectrometry (DESI-MS) was first presented in 2004, the fundamental design of the sprayer has undergone relatively minor modifications. This changed in 2022 when Takats and co-workers implemented the desorption electro-flow focusing (DEFFI) sprayer design by modifying the sprayer from a commercial DESI system, leading to significantly improved spatial resolution and robustness compared with the traditional DESI-MSI sprayer design. Here, we present the design of a new DEFFI sprayer that can be built from standard fittings and connectors in combination with an aluminum spray head that can be machined in most mechanic workshops. The new design represents a cost-efficient approach to improved DESI-MSI on mass spectrometers from all vendors, including high-resolution instruments such as Orbitraps and FT-ICR. The new DEFFI sprayer is demonstrated on a QExactive Orbitrap mass spectrometer, resulting in a massively improved ion yield compared with the classic DESI sprayer. The improved ion yield enables DESI-MSI at ion injection times down to 5 ms, allowing for DESI-MSI at a potentially very high speed. More importantly, the DEFFI sprayer delivers a more robust and focused spray, which is easier to use and requires less optimization. It provides high spatial resolution with limited effort compared with previous modifications of the traditional DESI design. Imaging of rat testis was performed at pixel sizes down to 12 μm, suggesting a spatial resolution of approximately 30 μm, which may have potential for further improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.