Abstract

We address the problem of systematically designing correct parallel programs and developing their efficient implementations on parallel machines. The design process starts with an intuitive, sequential algorithm and proceeds by expressing it in terms of well-defined, pre-implemented parallel components called skeletons. We demonstrate the skeleton-based design process using the tridiagonal system solver as our example application. We develop step by step three provably correct, parallel versions of our application, and finally arrive at a cost-optimal implementation in MPI (Message Passing Interface). The performance of our solutions is demonstrated experimentally on a Cray T3E machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.