Abstract

Inspired by the principle of heat dissipation of plant leaves, a bionic flat-plate heat pipe with fractal grooves was designed according to the veins of leaves. The working principle of the bionic flat-plate heat pipe is described, and the three-dimensional model of the bionic flat-plate heat pipe is established. Based on the volume of fluid (VOF) multiphase flow model and the continuum surface force (CSF) surface tension model, the steady-state numerical simulation of its working process is carried out. The experimental pieces of leaf veins flat-plate heat pipe were made and the heat transfer performance was studied. The results show that the working principle of the bionic flat-plate heat pipe is feasible, the flat-plate heat pipe with bionic structures developed in this study can be successfully start-up. The bionic flat-plate heat pipe has high heat transfer efficiency and working fluid reflux efficiency, which can effectively reduce the maximum temperature of the flat-plate heat pipe within a certain heating power range. However, when the heating power is 100 W, the heat pipe appears to be dried out. The height of the vapor chamber will affect the maximum temperature of the heat pipe. The optimal height of the vapor chamber of the heat pipe is 3-5 mm, and the specific value needs further discussion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call