Abstract

A blend of floating and pulsatile principles of drug delivery system seems to present the advantage that a drug can be released in the upper GI tract after a definite time period of no drug release. The objective of this study was to develop and evaluate a floating and pulsatile drug delivery system based on an impermeable cylinder. Pulsatile capsule was prepared by sealing the drug tablet and the buoyant material filler inside the impermeable capsule body with erodible plug. The drug delivery system showed typical floating and pulsatile release profile with a lag time followed by a rapid release phase. The lag time prior to the pulsatile drug release correlated well with the erosion properties of plugs and the composition of the plug could be controlled by the weight of the plug. The buoyancy of the whole system depended on the bulk density of the dosage form. Gamma-scintigraphic evaluation in humans was used to establish methodology capable of showing the subsequent in vivo performance of the floating and pulsatile release capsule. Developed formulations showed instantaneous floating with no drug release during the lag time followed by a pulse drug release. From the gamma-scintigraphic results, the pulsatile release capsule we prepared could achieve a rapid release after lag time in vivo, which was longer than that in vitro. The scintigraphic evaluation could confirm qualitatively that the system with in vitro lag time of 4.0 h provided, with relatively high reproducibility, a pulsatile release occurred around 5.0 h after administration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call