Abstract

ABSTRACTCore-shell magnetic nanoparticles (CSNPs) composed of a ferrimagnetic core (CoFe2O4) embedded in an antiferromagnetic shell (CoO) were produced using seed mediated growth in a polyol. Different core sizes and shell thicknesses were considered. The structural and magnetic properties of assemblies of these nanoparticles were characterized by means of X-ray Diffraction, Transmission Electron Microscopy, dc-magnetometry (SQUID) and 57Fe Mössbauer spectrometry. The measured EB magnetic field values, at low temperature, are found to be weak whatever the microstructural characteristics of the studied CSMNPs. Simultaneously, both the magnetization and the interparticle interaction (mainly dipolar) appear clearly reduced when the shell thickness increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.