Abstract

Due to their structure and complexity, chaotic systems have been introduced in several domains such as electronic circuits, commerce domain, encryption and network security. In this paper, we propose a novel multidimensional chaotic system with multiple parameters and nonlinear terms. Then, a two-phase algorithm is presented for investigating the chaotic behavior using bifurcation and Lyapunov exponent (LE) theories. Finally, we illustrate the performances of our proposal by constructing three (03) chaotic maps (3-D, 4-D and 5-D) and implementing the 3-D map on Field-Programmable-Gate-Array (FPGA) boards to generate random keys for securing a client–server communication purpose. Based on the achieved results, the proposed scheme is considered an ideal candidate for numerous resource-constrained devices and internet of the things (IoT) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call