Abstract

Fuzzy logic systems have been implemented successfully for the design of a wide variety of control systems. They provide a powerful way for designing nonlinear controllers using human expert knowledge. In this article, we present an approach to design and implement a fuzzy logic proportional integral controller (Fuzzy-PI) for omnidirectional robot navigation system, using a field-programmable gate array (FPGA). First, we define the kinematic model of the robot system and then we design, simulate, and optimize the controller navigation system using MATLAB and Robotino Sim platforms. The main goal of this work is the design of the Fuzzy-PI controller and the hardware implementation using FPGA resources. The controller can be implemented on an FPGA using software or hardware approach. For the latter approach, the Fuzzy-PI algorithm is implemented in VHDL language, synthesized, optimized, placed and routed, and downloaded on an FPGA board.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call