Abstract

The present work studied a simple direct foaming method for preparation of porous alumina ceramics by expansion of a ceramic suspension based on polyurethane (PU) foam system. The effects of polyurethane formulas including catalyst composition, blowing agent content, NCO index and solid content on the samples properties were investigated. The results showed that the homogeneity, porosity and mechanical properties are various for different formulas. The dried green bodies showed diametrical compressive strength in the range of 0.39–1.25 MPa and were amenable to machining operations such as milling, drilling and lathing. Meanwhile, PU formulas play an important role in the microstructures and mechanical properties of green bodies and sintered ceramic foams. Pyrolytic removal of polyurethane skeleton followed by sintering at 1550 °C produced alumina bodies with open cell porosity 54–75% and diametrical compressive strength 1.39–28.47 MPa. Microstructure showed both large (200–300 μm) and small (50–100 μm) pores all with various sizes of windows. Based on the optimization of polyurethane formulation, the porous alumina foam with porosity of 64% and compressive strength of 25.26 MPa was prepared. This polyurethane foam system is easily available and low-cost, which could be widely applied in preparation of other porous ceramics, such as ZrO2, SiO2, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call