Abstract

Molten salt pebble bed reactor is one of the sixth-generation IV reactor types. To investigate the mechanical behavior of the fuel pebbles in the core, a visualization experiment facility of pebble bed (VEFPB) is designed. To obtain a uniform flow field of the core and analyze the influence of the flow field on the structure of the pebble bed, computational fluid dynamics software Fluent is used to simulate the flow field distribution of the core of VEFPB. The simulation results show that the disturbance at the bottom of the pebble bed is proportional to the flow velocity of the inlet pipe, and the flow velocity close to the inlet side is more significant than that in other parts; the design of the cylinder bottom plate with holes of different sizes can effectively reduce the flow velocity and the disturbance at the bottom of the pebble bed. In addition, according to the velocity contours of the core of VEFPB, it is observed that the flow field distribution of the core is considerably uniform except at the bottom of the pebble bed. This ensures the stability of the pebble bed and verifies the rationality of the design of VEFPB. This study provides the technical support and reference for the flow field analysis of the core of molten salt pebble bed reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.