Abstract

This article addresses a flight-stability problem for the multiple unmanned aerial vehicles cooperative formation flight in the process of the closed and high-speed flight. The main objective is to design a cooperative formation controller with known external factors, and this controller can keep the consensus of attitude and position and reduce the communication delay between any two unmanned aerial vehicles and increase unmanned aerial vehicles formation cruise time under the known external factors. Known external factors are taken into consideration, and longitude maneuvers using nonlinear thrust vectors were employed with unsteady aerodynamic models, according to the attitude and position of unmanned aerial vehicles, which were employed as corresponding input signals for studying the dynamic characteristics of unmanned aerial vehicles formation flight. In addition, the relative distance between any two unmanned aerial vehicles was not allowed to exceed their safe distance so that the controller could perform collision avoidance. An analysis of formation flight distance error shows that it converged to a fixed value that well ensured unmanned aerial vehicles formation flight stability. The experimental results show that the controller can improve the speed of a closed formation effectively and maintain the stability of formation flight, which provides a method for closed formation flight controller design and collision avoidance for any two unmanned aerial vehicles. Meanwhile, the effectiveness of proposed controller is fully proved by semi-physical simulation platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.