Abstract
Although robotic helicopters have received increasing interest from university, industry, and military research groups, their flight envelope in autonomous operations remains extremely limited. The absence of high-fidelity simulation models has prevented the use of well-established multivariable control techniques for the design of high-bandwidth control systems. Existing controllers are of low bandwidth and cover only small portions of the vehicle's flight envelope. The results of the synergic use of high-fidelity integrated modeling strategies and robust multivariable control techniques for the rapid and reliable design of a high-bandwidth controller for robotic helicopters are presented. The project implemented and flight tested an H ∞ loop shaping controller on the Carnegie Mellon University (CMU) Yamaha R-50 robotic helicopter. During the flight tests, the CMU R-50 flew moderate-speed coordinated maneuvers with a level of tracking performance that exceeds performance reported in the publicly available literature. The authors believe that the results open the road to the implementation on robotic helicopters of full-flight-envelope control systems for complex autonomous missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.