Abstract

This study presents the design and Finite Element Analysis (FEA) of a thresher used in palm oil (Elaeis guineensis) extraction plants. The FEA was performed to ensure safe and cost effective of the thresher before fabrication. The analytical design of the threshing shaft and drum of the thresher was validated using SolidWorks (2021) CAD software for static simulation, employing plain carbon steel as the material. For the threshing shaft, forces of and were applied at strategic points, resulting in a maximum bending stress of , significantly below the yield strength of . The shaft's diameter of 50 mm was confirmed as adequate with a factor of safety (FOS) ranging from 3.17 to 142.42, validating the shaft design's safety for fabrication. Similarly, the drum unit, supported by a spider arm and cylindrical bars, was subjected to an equivalent twisting moment of 861.25 Nm and a batch weight of 1226.25 N. The maximum von Mises stress of was well within safe limits, indicating robustness under operational loads. The maximum resultant displacement and equivalent strain were respectively which can be said to be minimal, reinforcing the drum's structural integrity. A minimum FOS of 20.45 further highlighted the drum's durability and resistance to fatigue. These results confirm the reliability and safety of the designed thresher components, ensuring efficient and sustainable palm oil extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.