Abstract

This paper presents the designs and calculations of a leaping type soil-covering device for potato cultivation. The device is based on the full-film mulching cultivation mode, where the seed rows are covered with soil. The working principle of the leaping type soil-covering device was analyzed and the core structural parameters were determined. In order to search for a reasonable rotation speed of the screw conveyor, the soil-covering process of leaping type soil-covering device is simulated based on the EDEM software. Through single factor simulation experiments, relationship between the width and thickness of covering soil and the rotation speed of the screw conveyor was studied. The optimal values obtained were the scraper height of 60 mm and the screw conveyor rotation speed of 169 r/min. Based on the quadratic function fitting, the relationship between the length of the soil cover and the position of the seedling belt was determined. With the optimization objective of the seedling belt misalignment rate, the length of the soil cover was determined to be 417 mm. A prototype of the device was manufactured and tested in the field. The field test showed that the qualified rate of the thickness of the seeded soil cover was 92%, the qualified rate of covering soil thickness was 91%, the dislocation rate between the seeding row with covering soil and the seedling belt was 5%, and the damage degree of plastic film was 49.2 mm/m2. These results indicate that the designed potato planter with leaping type soil-covering device meets accepted agronomical requirements of potato planters and film-mulching planters. The natural emergence rate of potato seedlings reached 92% and the seedling burning rate was 7%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call