Abstract
The wheelchair is essential for people with either spinal injury, limb injury, or trauma patients. The need at present is to customize the wheelchair based on the requirements of the disabled person. The maintenance and customization of a manual wheelchair is both simple and cost-effective when compared to powered wheelchairs, which are expensive and difficult to maintain in the long run. Accordingly, in this article, an attempt has been made to bring the facilities available in a powered wheelchair into the manual wheelchair, making it affordable to common people. Feasibility of a distinct manual wheelchair rear wheel rim is examined for various hub motor weights. The rear wheel of the manual wheelchair was replaced with an in-wheel direct drive hub-motor system. The proposed wheel model was designed using CATIA – V5 and an analysis was done using ANSYS software. A structural analysis was carried out to check the reliability and durability of the proposed wheel for different materials by changing hub-motor weights at various loading conditions. The nature of vibrations with respect to natural mode frequencies are found through modal analysis. Finally, the dynamic behavior of the proposed motorized wheel was examined using harmonic response analysis. Simulation results show the robustness of the proposed design and viability for real-time implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Manufacturing, Materials, and Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.