Abstract
Improving the impaired hand function of spinal cord injury patients with a robotic exoskeleton can highly impact their self-management, and ultimately their quality of life. In this paper the design and evaluation of a new, lightweight (50 gram) robotic thumb exoskeleton, called TGRIP, was presented that supports the lateral pinch grasp. The mechanism consists of a linear actuator that was mounted to the dorsal side of the hand, and a force transmission mechanism that flexes the thumb towards the side of the index finger. The thumb movement was controlled through contralateral wrist rotation. Experimental results from an evaluation with three spinal cord injury patients showed that the achieved grip force (~ 7N) was higher and the overall performance during the Grasp and Release Test was better with the T-GRIP than without device. The device shows great potential for improving the hand function of patients with cervical spinal cord injury by actuating only a single degree of freedom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE ... International Conference on Rehabilitation Robotics : [proceedings]
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.