Abstract
A novel and easy-to-prepare plasmonic nanoparticles doped semiconductor substrate-Zn@ZnO@Ag chip with ultra-high surface-enhanced Raman scattering (SERS) activity was fabricated for label-free, rapid and sensitive analysis of norfloxacin. The Zn@ZnO array was synthesized by surface oxidation at low temperature, followed by in-situ reduction to form leaf-like AgNPs on Zn@ZnO array without extra reducing agent, thus fabricating a Zn@ZnO@Ag chip. The ultra-high SERS activity is attributed to the synergistic effect of semiconductor characteristics of ZnO and surface plasmon resonance properties of leaf-like AgNPs. The possible enhancement mechanism was verified by density functional theory simulations. The proposed SERS method showed a wide linear range (3.0-500.0μg/L) and low limit of detection (0.8μg/L) for norfloxacin analysis. High sensitivity, good selectivity and acceptable recoveries (82.7-113.6%) in real sample analysis were obtained. This study offers a promising SERS chip-based platform for norfloxacin detection in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.