Abstract
This paper presents a solution to implement neutral argon plasma (NAP) in minimally invasive medical devices for therapeutic endoscopy. The NAP system is composed of compressed inert gas (argon), two electrodes, and a high-voltage source to ionise the argon. The miniaturisation of an argon reservoir is required. Finite-element method simulations of small reservoirs of an aluminium alloy with thicknesses of 0.2, 0.4, and 0.6 mm at a pressure of 7 atm were performed. The numerical results show total deformation of 108 μm, stress of 160 MPa, and a safety factor of 1.8 for the thinnest argon reservoir, resulting in a component with no permanent deformation. A small reservoir was formed via vacuum-assisted microcasting. The prototype exhibited a small and thin-walled argon reservoir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.