Abstract

AbstractGeTe and (Bi,Sb)2Te3 are two representative thermoelectric (TE) materials showing maximum performance at middle and low temperature, respectively. In order to achieve higher performance over the whole temperature range, their segmented one‐leg TE modules are designed and fabricated by one‐step spark plasma sintering (SPS). To search for contact and connect layers, the diffusion behavior of Fe, Ni, Cu, and Ti metal layers in GeTe is studied systematically. The results show that Ti with a similar linear expansivity (10.80 × 10−6 K−1) to GeTe, has low contact resistance (3 µΩ cm2) and thin diffusion layer (0.4 µm), and thus is an effective metallization layer for GeTe. The geometric structure of the GeTe/(Bi,Sb)2Te3 segmented one‐leg TE module and the ratio of GeTe to (Bi,Sb)2Te3 are determined by finite element simulation method. When the GeTe height ratio is 0.66, its theoretical maximum conversion efficiency (ηmax) can reach 15.9% without considering the thermal radiation and thermal/electrical contact resistance. The fabricated GeTe/(Bi,Sb)2Te3 segmented one‐leg TE module showed a ηmax up to 9.5% with a power density ≈ 7.45 mW mm−2, which are relatively high but lower than theoretical predictions, indicating that developing segmented TE modules is an effective approach to enhance TE conversion efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.