Abstract

A poly(DL-lactic-co-glycolic acid) (PLGA) sandwich fibrinogen/ adipose stem cell (ADSC) construct was fabricated to generate smooth muscle tissue. The mechanical properties and ADSC compatibility of PLGA, poly(ethylene glycol-1,6-hexamethyl diisocyanate-caprolactone) i.e. polyurethane (PU), gelatin, alginate, and fibrin composites were evaluated for vascular smooth muscle tissue generation. Synthetic PLGA and PU combined with natural gelatin, alginate, and fibrin for strength and cell compatibility were found to be effective. A trilayer construct was designed and built with a microporous inner PLGA layer to provide nutrient, oxygen, and metabolite transfer while the outer PLGA layer with no pores prevented leakage during in vitro culture and in vivo implantation. The fibrin layer suitably accommodated ADSC growth, migration, proliferation, and differentiation inside the construct. This design has the potential for wide use in tissue engineering and complex organ construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.