Abstract

In the present work, an attempt has been made to develop a PRMS in a cost effective and environmental friendly way through FEMM analysis of magnetic roller (active part of PRMS). The FEMM analysis indicates that, the optimized magnetic roller having magnet-to-steel disk thickness ratio of 5 mm: 2.5 mm was proved to be gainful in beneficiating paramagnetic minerals due to the best magnetic field value from the roller surface that is, 0.89 to 2.59 T. Prediction analysis was performed on FEMM data using artificial neural network (ANN) modelling technique. Further, the design calculations of lab scale PRMS in terms of power requirements and belt tensions were addressed. The fabricated PRMS was tested on paramagnetic mineral (hematite ore) assayed 51.24% of Fe, 10.20% of SiO2, and 2.98% of Al2O3 for different roller speeds and the belt thickness. The result showed that, at 0.5 mm belt thickness with 180 rpm roller speed the fabricated lab scale PRMS works well in terms of improvement in the Fe content up to 59.5% at the concentrate along with the Fe recovery of 71.41%. The obtained results suggest that, the FEMM analysis is more suitable to optimize the effective magnetic roller for the PRMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.