Abstract

Magnetically-assisted delivery of therapeutic agents to the site of interest, which is referred to as magnetic drug targeting, has proven to be a promising strategy in a number of studies. One of the key advantages over other targeting strategies is the possibility to control remotely the distribution and accumulation of the nanocarriers after parenteral administration. However, preparation of effective and robust magnetically responsive nanocarriers based on superparamagnetic iron oxide nanocrystals (SPIONs) still represents a great scientific challenge, since spatial guidance of individual SPIONs is ineffective despite the presence of high magnetic field gradient. A strategy to overcome this issue is the clustering of SPIONs to achieve sufficient magnetic responsiveness. In this mini-review, we address current and future strategies for the design and fabrication of magnetically responsive nanocarriers based on SPIONs for magnetically-targeted drug delivery, including the underlying physical requirements, the possibility of drug loading, and the control of drug release at the targeted site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.